Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(11): 6476-6491, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254357

RESUMO

Cellular damage is a key issue in the context of cryopreservation. Much of this damage is believed to be caused by extracellular ice formation at temperatures well above the homogeneous freezing point of pure water. Hence the question: what initiates ice nucleation during cryopreservation? In this paper, we assess whether cellular membranes could be responsible for facilitating the ice nucleation process, and what characteristics would make them good or bad ice nucleating agents. By means of molecular dynamics simulations, we investigate a number of phospholipids and lipopolysaccharide bilayers at the interface with supercooled liquid water. While these systems certainly appear to act as ice nucleating agents, it is likely that other impurities might also play a role in initiating extracellular ice nucleation. Furthermore, we elucidate the factors which affect a bilayer's ability to act as an ice nucleating agent; these are complex, with specific reference to both chemical and structural factors. These findings represent a first attempt to pinpoint the origin of extracellular ice nucleation, with important implications for the cryopreservation process.


Assuntos
Criopreservação , Gelo , Bicamadas Lipídicas , Congelamento , Simulação de Dinâmica Molecular , Água/química
2.
J Phys Chem B ; 124(36): 7819-7829, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32790367

RESUMO

Plasma membranes (PMs) contain hundreds of different lipid species that contribute differently to overall bilayer properties. By modulation of these properties, membrane protein function can be affected. Furthermore, inhomogeneous lipid mixing and domains of lipid enrichment/depletion can sort proteins and provide optimal local environments. Recent coarse-grained (CG) Martini molecular dynamics efforts have provided glimpses into lipid organization of different PMs: an "Average" and a "Brain" PM. Their high complexity and large size require long simulations (∼80 µs) for proper sampling. Thus, these simulations are computationally taxing. This level of complexity is beyond the possibilities of all-atom simulations, raising the question-what complexity is needed for "realistic" bilayer properties? We constructed CG Martini PM models of varying complexity (63 down to 8 different lipids). Lipid tail saturations and headgroup combinations were kept as consistent as possible for the "tissues'" (Average/Brain) at three levels of compositional complexity. For each system, we analyzed membrane properties to evaluate which features can be retained at lower complexity and validate eight-component bilayers that can act as reliable mimetics for Average or Brain PMs. Systems of reduced complexity deliver a more robust and malleable tool for computational membrane studies and allow for equivalent all-atom simulations and experiments.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membrana Celular , Membranas , Proteínas
3.
Structure ; 28(6): 625-634.e6, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348749

RESUMO

The small protein AcrZ in Escherichia coli interacts with the transmembrane portion of the multidrug efflux pump AcrB and increases resistance of the bacterium to a subset of the antibiotic substrates of that transporter. It is not clear how the physical association of the two proteins selectively changes activity of the pump for defined substrates. Here, we report cryo-EM structures of AcrB and the AcrBZ complex in lipid environments, and comparisons suggest that conformational changes occur in the drug-binding pocket as a result of AcrZ binding. Simulations indicate that cardiolipin preferentially interacts with the AcrBZ complex, due to increased contact surface, and we observe that chloramphenicol sensitivity of bacteria lacking AcrZ is exacerbated when combined with cardiolipin deficiency. Taken together, the data suggest that AcrZ and lipid cooperate to allosterically modulate AcrB activity. This mode of regulation by a small protein and lipid may occur for other membrane proteins.


Assuntos
Cardiolipinas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Regulação Alostérica , Sítios de Ligação , Proteínas de Transporte/genética , Cloranfenicol/farmacologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Complexos Multiproteicos/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
4.
ACS Omega ; 4(20): 18889-18899, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31737850

RESUMO

Cinnamycin is a lantibiotic peptide, which selectively binds to and permeabilizes membranes containing phosphatidylethanolamine (PE) lipids. As PE is a major component of many bacterial cell membranes, cinnamycin has considerable potential for destroying these. In this study, molecular dynamics simulations are used to elucidate the structure of a lipid-cinnamycin complex and the origin of selective lipid binding. The simulations reveal that cinnamycin selectively binds to PE by forming an extensive hydrogen-bonding network involving all three hydrogen atoms of the primary ammonium group of the PE head group. The substitution of a single hydrogen atom with a methyl group on the ammonium nitrogen destabilizes this hydrogen-bonding network. In addition to binding the primary ammonium group, cinnamycin also interacts with the phosphate group of the lipid through a previously uncharacterized phosphate-binding site formed by the backbone Phe10-Abu11-Phe12-Val13 moieties (Abu = 1-α-aminobutyric acid). In addition, hydroxylation of Asp15 at Cß plays a role in selective binding of PE due to its tight interaction with the charged amine of the lipid head group. The simulations reveal that the position and orientation of the peptide in the membrane depend on the type of lipid to which it binds, suggesting a reason for why cinnamycin selectively permeabilizes PE-containing membranes.

5.
J Phys Chem Lett ; 8(22): 5513-5518, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29053278

RESUMO

The cell envelope of Gram-negative bacteria is composed of two membranes separated by a soluble region. Here, we report microsecond time scale coarse-grained molecular dynamics simulations of models of the Escherichia coli cell envelope that incorporate both membranes and various native membrane proteins. Our results predict that both the inner and outer membranes curve in a manner dependent on the size of the embedded proteins. The tightly cross-linked lipopolysaccharide molecules (LPS) of the outer membrane cause a strong coupling between the movement of proteins and lipids. While the flow of phospholipids is more random, their diffusion is nevertheless influenced by nearby proteins. Our results reveal protein-induced lipid sorting, whereby cardiolipin is significantly enriched within the vicinity of the water channel AqpZ and the multidrug efflux pump AcrBZ. In summary, our results provide unprecedented details of the intricate relationship between both membranes of E. coli and the proteins embedded within them.


Assuntos
Membrana Celular/química , Proteínas de Escherichia coli/química , Escherichia coli/fisiologia , Simulação de Dinâmica Molecular , Transporte Proteico , Proteínas da Membrana Bacteriana Externa , Difusão , Bicamadas Lipídicas , Fosfolipídeos , Proteínas/metabolismo
6.
J Comput Chem ; 38(27): 2354-2363, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28776689

RESUMO

A complex cell envelope, composed of a mixture of lipid types including lipopolysaccharides, protects bacteria from the external environment. Clearly, the proteins embedded within the various components of the cell envelope have an intricate relationship with their local environment. Therefore, to obtain meaningful results, molecular simulations need to mimic as far as possible this chemically heterogeneous system. However, setting up such systems for computational studies is far from trivial, and consequently the vast majority of simulations of outer membrane proteins still rely on oversimplified phospholipid membrane models. This work presents an update of CHARMM-GUI Martini Maker for coarse-grained modeling and simulation of complex bacterial membranes with lipopolysaccharides. The qualities of the outer membrane systems generated by Martini Maker are validated by simulating them in bilayer, vesicle, nanodisc, and micelle environments (with and without outer membrane proteins) using the Martini force field. We expect this new feature in Martini Maker to be a useful tool for modeling large, complicated bacterial outer membrane systems in a user-friendly manner. © 2017 Wiley Periodicals, Inc.


Assuntos
Bactérias/química , Membrana Celular/química , Lipopolissacarídeos/química , Modelos Químicos , Design de Software , Proteínas da Membrana Bacteriana Externa/química , Bicamadas Lipídicas/química , Micelas , Simulação de Dinâmica Molecular , Fosfolipídeos/química
7.
J Phys Chem Lett ; 8(11): 2513-2518, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28467715

RESUMO

Bacteria are protected by complex molecular architectures known as the cell envelope. The cell envelope is composed of regions with distinct chemical compositions and physical properties, namely, membranes and a cell wall. To develop novel antibiotics to combat pathogenic bacteria, molecular level knowledge of the structure, dynamics, and interplay between the chemical components of the cell envelope that surrounds bacterial cells is imperative. In addition, conserved molecular patterns associated with the bacterial envelope are recognized by receptors as part of the mammalian defensive response to infection, and an improved understanding of bacteria-host interactions would facilitate the search for novel immunotherapeutics. This Perspective introduces an emerging area of computational biology: multiscale molecular dynamics simulations of chemically complex models of bacterial lipids and membranes. We discuss progress to date, and identify areas for future development that will enable the study of aspects of the membrane components that are as yet unexplored by computational methods.


Assuntos
Antibacterianos , Proteínas da Membrana Bacteriana Externa/química , Membrana Celular/química , Bactérias Gram-Negativas , Simulação de Dinâmica Molecular , Parede Celular , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Modelos Moleculares
8.
Biochemistry ; 56(11): 1672-1679, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28248490

RESUMO

In the following, molecular simulations are used to reveal unexpected behavior within bacterial membranes. We show that lipopolysaccharide molecules found in these membranes form viscous amorphous solids when they are interlinked with monovalent and divalent cations. The bilayers exhibit both liquid and glassy characteristics, due to the coexistence of both liquid and crystalline domains in the bilayer. Polymyxin B1, a potent antimicrobial peptide, is shown to increase order within the lipopolysaccharide bilayers by inducing the formation of crystalline patches. Crucially we are able to decompose the energetics of insertion into their enthalpic and entropic components. The present coarse-grain molecular dynamics study provides unprecedented insights into the antibacterial action of antimicrobial peptides, thus paving the way for development of novel therapeutic agents to treat multiple drug resistant Gram-negative bacteria.


Assuntos
Cálcio/química , Membrana Celular/efeitos dos fármacos , Bicamadas Lipídicas/química , Lipopolissacarídeos/química , Polimixinas/análogos & derivados , Sódio/química , Cátions Bivalentes , Cátions Monovalentes , Membrana Celular/química , Membrana Celular/ultraestrutura , Cristalização , Bactérias Gram-Negativas/química , Simulação de Dinâmica Molecular , Transição de Fase/efeitos dos fármacos , Polimixinas/química , Polimixinas/farmacologia , Termodinâmica
9.
J Phys Chem B ; 120(43): 11170-11179, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27712070

RESUMO

Carbon fullerenes are emerging as effective devices for different biomedical applications, including the transportation of nanosized drugs and extraction of harmful oxidants and radicals. It has been proposed that fullerenes could be used as novel antibacterial agents, given the realization that the nanoparticles can kill pathogenic Gram-negative bacteria. To explore this at the molecular level, we simulated C60 fullerenes with bacterial membranes using the coarse-grain molecular dynamics Martini force field. We found that pristine C60 has a limited tendency to penetrate (incomplete core) Re mutant lipopolysaccharide (LPS) leaflets, but the translocation of C60 fullerenes into (complete core) Ra mutant LPS leaflets is not thermodynamically favored. Moreover, we showed that the permeability of the Re LPS bilayers depends sensitively on the system temperature, charge of ambient ions, and prevalence of palmitoyloleoylphosphoethanolamine (POPE) defect domains. The different permeabilities are rationalized in terms of transitory head group pore formation, which underpins the translocation of C60 into the lipid core. The Re LPS lipids readily form transient micropores when they are linked with monovalent cations or when they are heated to a high temperature. POPE lipids are shown to be particularly adept at forming these transient surface cavities, and their inclusion into Re LPS membranes facilitates the formation of particularly large pores that are tunneled by C60 aggregates of a significant size (∼5 nm wide). After insertion into the lipid core, the aggregates dissociate, and the disbanded nanoparticles migrate to the interface between separate POPE and LPS domains, where they weaken the boundaries between the coexisting lipid fractions and thereby promote lipid mixing.


Assuntos
Membrana Celular/química , Escherichia coli/química , Fulerenos/química , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Lipídeos/química , Lipopolissacarídeos/química , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...